Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37989591

RESUMO

Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.


Assuntos
Localização de Som , Estrigiformes , Animais , Localização de Som/fisiologia , Audição , Tronco Encefálico/fisiologia , Estimulação Acústica , Vias Auditivas/fisiologia
2.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36778252

RESUMO

Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.

3.
J Neurophysiol ; 125(3): 887-902, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534648

RESUMO

The configuration of lizard ears, where sound can reach both surfaces of the eardrums, produces a strongly directional ear, but the subsequent processing of sound direction by the auditory pathway is unknown. We report here on directional responses from the first stage, the auditory nerve. We used laser vibrometry to measure eardrum responses in Tokay geckos and in the same animals recorded 117 auditory nerve single fiber responses to free-field sound from radially distributed speakers. Responses from all fibers showed strongly lateralized activity at all frequencies, with an ovoidal directivity that resembled the eardrum directivity. Geckos are vocal and showed pronounced nerve fiber directionality to components of the call. To estimate the accuracy with which a gecko could discriminate between sound sources, we computed the Fisher information (FI) for each neuron. FI was highest just contralateral to the midline, front and back. Thus, the auditory nerve could provide a population code for sound source direction, and geckos should have a high capacity to differentiate between midline sound sources. In brain, binaural comparisons, for example, by IE (ipsilateral excitatory, contralateral inhibitory) neurons, should sharpen the lateralized responses and extend the dynamic range of directionality.NEW & NOTEWORTHY In mammals, the two ears are unconnected pressure receivers, and sound direction is computed from binaural interactions in the brain, but in lizards, the eardrums interact acoustically, producing a strongly directional response. We show strongly lateralized responses from gecko auditory nerve fibers to directional sound stimulation and high Fisher information on either side of the midline. Thus, already the auditory nerve provides a population code for sound source direction in the gecko.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Localização de Som/fisiologia , Vibração , Animais , Feminino , Lagartos , Masculino
4.
J Neurophysiol ; 121(3): 1034-1047, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575430

RESUMO

Synaptic currents are frequently assumed to make a major contribution to the extracellular field potential (EFP). However, in any neuronal population, the explicit separation of synaptic sources from other contributions such as postsynaptic spikes remains a challenge. Here we take advantage of the simple organization of the barn owl nucleus laminaris (NL) in the auditory brain stem to isolate synaptic currents through the iontophoretic application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[ f]quinoxaline-7-sulfonamide (NBQX). Responses to auditory stimulation show that the temporal dynamics of the evoked synaptic contributions to the EFP are consistent with synaptic short-term depression (STD). The estimated time constants of an STD model fitted to the data are similar to the fast time constants reported from in vitro experiments in the chick. Overall, the putative synaptic EFPs in the barn owl NL are significant but small (<1% change of the variance by NBQX). This result supports the hypothesis that the EFP in NL is generated mainly by axonal spikes, in contrast to most other neuronal systems. NEW & NOTEWORTHY Synaptic currents are assumed to make a major contribution to the extracellular field potential in the brain, but it is hard to directly isolate these synaptic components. Here we take advantage of the simple organization of the barn owl nucleus laminaris in the auditory brain stem to isolate synaptic currents through the iontophoretic application of a synaptic blocker. We show that the responses are consistent with a simple model of short-term synaptic depression.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Potenciais Sinápticos , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Quinoxalinas/farmacologia , Estrigiformes
5.
J Neurophysiol ; 119(4): 1422-1436, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357463

RESUMO

Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine whether we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010; Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R. J Neurophysiol 110: 117-130, 2013; McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. eLife 6: e26106, 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while nucleus magnocellularis (NM) spikes dominate the EFP at frequencies ≳1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible. NEW & NOTEWORTHY Extracellular field potentials (EFPs) generate clinically important signals, but their sources are incompletely understood. As a model, we have analyzed the auditory neurophonic in the barn owl's nucleus laminaris. There the EFP originates predominantly from spiking in the afferent axons, with spectral power ≳1 kHz, while postsynaptic laminaris neurons contribute little. In conclusion, the identification of EFP sources is possible if they have different spectral components and if their activities can be modulated selectively.


Assuntos
Potenciais de Ação/fisiologia , Percepção Auditiva/fisiologia , Tronco Encefálico/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Estrigiformes/fisiologia , Animais , Axônios/fisiologia , Núcleo Coclear/fisiologia , Eletroencefalografia , Feminino , Masculino
6.
Acta Acust United Acust ; 104(5): 874-877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30976274

RESUMO

The auditory brainstem response (ABR) is generated in the auditory brainstem by local current sources, which also give rise to extracellular field potentials (EFPs). The origins of both the ABR and the EFP are not well understood. We have recently found that EFPs, especially their dipole behavior, may be dominated by the branching patterns and the activity of axonal terminal zones [1]. To test the hypothesis that axons also shape the ABR, we used the well-described barn owl early auditory system. We recorded the ABR and a series of EFPs between the brain surface and nucleus laminaris (NL) in response to binaural clicks. The ABR and the EFP within and around NL are correlated. Together, our data suggest that axonal dipoles within the barn owl nucleus laminaris contribute to the ABR wave III.

7.
Elife ; 62017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28871959

RESUMO

Extracellular field potentials (EFPs) are an important source of information in neuroscience, but their physiological basis is in many cases still a matter of debate. Axonal sources are typically discounted in modeling and data analysis because their contributions are assumed to be negligible. Here, we established experimentally and theoretically that contributions of axons to EFPs can be significant. Modeling action potentials propagating along axons, we showed that EFPs were prominent in the presence of terminal zones where axons branch and terminate in close succession, as found in many brain regions. Our models predicted a dipolar far field and a polarity reversal at the center of the terminal zone. We confirmed these predictions using EFPs from the barn owl auditory brainstem where we recorded in nucleus laminaris using a multielectrode array. These results demonstrate that axonal terminal zones can produce EFPs with considerable amplitude and spatial reach.


Assuntos
Tronco Encefálico/fisiologia , Fenômenos Eletrofisiológicos , Terminações Pré-Sinápticas/fisiologia , Estrigiformes/fisiologia , Animais , Eletroencefalografia , Modelos Neurológicos
8.
J Neurophysiol ; 114(3): 1862-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26224776

RESUMO

Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD.


Assuntos
Tronco Encefálico/fisiologia , Tempo de Reação , Navegação Espacial , Animais , Axônios/fisiologia , Feminino , Masculino , Estrigiformes , Transmissão Sináptica
9.
Adv Exp Med Biol ; 787: 215-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23716226

RESUMO

Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time differences (ITDs). In barn owls, NL receives bilateral inputs from NM such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents and their synapses on NL neurons generate a tone-induced local field potential, or neurophonic, that varies systematically with position in NL. From dorsal to ventral within the nucleus, the best interaural time difference (ITD) of the neurophonic shifts from contralateral space to best ITDs around 0 µs. Earlier recordings suggested that in NL, iso-delay contours ran parallel to the dorsal and ventral borders of NL (Sullivan WE, Konishi M. Proc Natl Acad Sci U S A 83:8400-8404, 1986). This axis is orthogonal to that seen in chicken NL, where a single map of ITD runs from around 0 µs ITD medially to contralateral space laterally (Köppl C, Carr CE. Biol Cyber 98:541-559, 2008). Yet the trajectories of the NM axons are similar in owl and chicken (Seidl AH, Rubel EW, Harris DM, J Neurosci 30:70-80, 2010). We therefore used clicks to measure conduction time in NL and made lesions to mark the 0 µs iso-delay contour in multiple penetrations along an isofrequency slab. Iso-delay contours were not parallel to the dorsal and ventral borders of NL; instead the 0 µs iso-delay contour shifted systematically from a dorsal position in medial NL to a ventral position in lateral NL. Could different conduction delays account for the mediolateral shift in the representation of 0 µs ITD? We measured conduction delays using the neurophonic potential and developed a simple linear model of the delay-line conduction velocity. We then raised young owls with time-delaying earplugs in one ear (Gold JI, Knudsen EI, J Neurophysiol 82:2197-2209, 1999) to examine map plasticity.


Assuntos
Vias Auditivas/anatomia & histologia , Mapeamento Encefálico/métodos , Tronco Encefálico/anatomia & histologia , Localização de Som/fisiologia , Estrigiformes/anatomia & histologia , Estimulação Acústica/métodos , Animais , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Axônios/fisiologia , Tronco Encefálico/fisiologia , Modelos Biológicos , Plasticidade Neuronal/fisiologia , Tempo de Reação/fisiologia , Estrigiformes/fisiologia , Percepção do Tempo/fisiologia
10.
J Neurophysiol ; 110(1): 117-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23554438

RESUMO

The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic.


Assuntos
Estimulação Acústica , Tronco Encefálico/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Estrigiformes
11.
J Neurophysiol ; 108(10): 2837-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933726

RESUMO

Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245-15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL.


Assuntos
Potenciais da Membrana , Neurônios/fisiologia , Localização de Som , Estrigiformes/fisiologia , Animais , Núcleo Coclear/fisiologia , Modelos Neurológicos , Fibras Nervosas/fisiologia , Razão Sinal-Ruído
12.
J Neurophysiol ; 104(4): 2274-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685926

RESUMO

The neurophonic is a sound-evoked, frequency-following potential that can be recorded extracellularly in nucleus laminaris of the barn owl. The origin of the neurophonic, and thus the mechanisms that give rise to its exceptional temporal precision, has not yet been identified. Putative generators of the neurophonic are the activity of afferent axons, synaptic activation of laminaris neurons, or action potentials in laminaris neurons. To identify the generators, we analyzed the neurophonic in the high-frequency (>2.5 kHz) region of nucleus laminaris in response to monaural pure-tone stimulation. The amplitude of the neurophonic is typically in the millivolt range. The signal-to-noise ratio reaches values beyond 30 dB. To assess which generators could give rise to these large, synchronous extracellular potentials, we developed a computational model. Spike trains were produced by an inhomogeneous Poisson process and convolved with a spike waveform. The model explained the dependence of the simulated neurophonic on parameters such as the mean rate, the vector strength of phase locking, the number of statistically independent sources, and why the signal-to-noise ratio is independent of the spike waveform and subsequent filtering of the signal. We found that several hundred sources are needed to reach the observed signal-to-noise ratio. The summed coherent signal from the densely packed afferent axons and activation of their synapses on laminaris neurons are alone sufficient to explain the measured properties of the neurophonic.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos/fisiologia , Espaço Extracelular/fisiologia , Estrigiformes/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...